If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-34x+37x^2=0
a = 37; b = -34; c = +1;
Δ = b2-4ac
Δ = -342-4·37·1
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-12\sqrt{7}}{2*37}=\frac{34-12\sqrt{7}}{74} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+12\sqrt{7}}{2*37}=\frac{34+12\sqrt{7}}{74} $
| 2/13r=3/2 | | 0.25^x^-2=32 | | x²-x-5=(1/2)x²-(3/4)x+(1/4) | | 5x^2+3x+18=0 | | 396/x-10=22 | | 3/4k-(k+1/5)=1/20(k+5) | | 5/6+1/6=x | | 6x-11=4x+17 | | -2(6-p)=2p-12 | | 5/3x=10/12 | | x²-x-5=(1/2)x²-(3/4)x+(14) | | 5/3x=10/12 | | -5-(15y-1)=2(7y-16-y | | x^2+185x-7800=0 | | 10x+2–2x=8(x+1)–7 | | 3/2+1/3t=7 | | 7x-8x=18 | | x^2-24x-105=0 | | 6n+5.50n=51 | | 22=-2(-3-y) | | x+(x+20)+(7x-10)=180 | | 12g+6=12g+9 | | 0.5x-1/2=3.7+x | | -8(x+2)-9x=-2(x-7) | | 4=8+p/3 | | 2(4x-1)=8-2x | | 8x-19=5x+5 | | -(3-7n)+6(2n-1)=16-2n+5 | | 6^(x^2-16x)=36^(3x) | | 4x-9=21x+8 | | 1/4x+3=3/4x-7 | | 11w-15w=12 |